文章编号: 0258-7025(2010)05-1162-04

激光二极管抽运声光调 Q Nd:YVO₄板条 激光器

闫 莹 张恒利 李 静 刘 洋 沙鹏飞 辛建国

(北京理工大学光电学院,北京 100081)

摘要 报道了采用激光二极管(LD)阵列部分端面抽运 Nd: YVO₄板条声光(AO)调 Q 激光输出特性。实验中采用 了平-凹稳定谐振腔,输入镜曲率半径500 mm,输出透射率为 T=35%,腔长为 L=110 mm。Nd: YVO₄板条晶体尺 寸为12 mm×10 mm×1 mm, a 轴切割, c 轴平行于12 mm方向,掺杂浓度为0.3%。在抽运功率为104 W,重复频率 为40 kHz时,得到最高平均输出功率为40 W,单脉冲能量为1 mJ,脉宽为42.2 ns,光-光转换效率为38.4%;在重复 频率为20 kHz时,得到最高平均输出功率为33.3 W,单脉冲能量为1.66 mJ,最短脉宽为21.1 ns。

关键词 激光器;板条激光器;激光二极管抽运;Nd:YVO4板条;声光调Q;稳定腔 中图分类号 TN248.1 **文献标识码** A **doi**:10.3788/CJL20103705.1162

LD Pumped Acoustic-Optic Q-Switched Nd: YVO₄ Slab Laser

Yan Ying Zhang Hengli Li Jing Liu Yang Sha Pengfei Xin Jianguo (School of Optoelectronics, Beijing Institute of Technology, Beijing 100081, China)

Abstract The output characteristics of an acoustic-optic (AO) *Q*-switched laser diode (LD) stacks partially endpumped Nd: YVO_4 slab laser was demonstrated. A stable cavity was employed, the curvature radius of input mirror was 500 mm, the transmission of the output mirror was 35%, and the cavity length is 110 mm. The size of the 0.3% Nd: YVO_4 slab crystal was 12 mm × 10 mm × 1 mm, with *a*-cut and the *c*-axis along its 12 mm-direction. At pumping power of 104 W and repetition rate of 40 kHz, the average output power of 40 W and single pulse energy of 1 mJ were achieved with an optical-to-optical efficiency of 38.4% and pulse width of 42.2 ns; at repetition rate of 20 kHz, the average output power of 33.3 W and single pulse energy of 1.66 mJ were achieved with the pulse width of 21.1 ns.

Key words lasers; slab laser; laser diode pumped; Nd: YVO4 slab; acoustic-optic Q-switched; stable resonator

1 引 言

随着激光二极管(LD)抽运全固态激光器的发展,同时也为了满足在激光加工、激光雷达和激光打标等^[1]领域的需要,高功率、高重复频率、窄脉宽固体激光器得到了越来越多的重视。电光调Q和声光(AO)调Q是目前应用较多的两种调制方式,由于基本原理不同,因此输出脉冲激光也具有不同的特点。电光调Q的响应时间比较短,容易获得窄脉宽的激光输出,但同时电光晶体需要的驱动电压比较高(一般为几千伏特),因此不容易获得高重复频率;声光调Q开关基于衍射原理,属于慢开关,不容易得到窄脉宽的激光输出,但调制频率高,可以实现

几十至上百千赫兹的重复频率[2~4]。

激光二极管抽运全固态板条激光器由于其增益 介质具有较大的散热面积,增益介质热效应得到一 定缓解,因此容易获得较高功率的激光输出。激光 二极管部分端面抽运板条激光器是一种可以获得高 功率高光束质量的板条激光器件^[5+6],同时利用这 种结构和电光调Q装置已获得了高功率、窄脉宽的 高光束质量输出^[7~9]。本文采用声光调Q方式和激 光二极管抽运板条 Nd:YVO4晶体,采用平-凹稳定 腔结构,在腔长 L=110 mm时获得在水平方向近似 为一维平顶的声光调Q激光输出,在重复频率为 40 kHz,输出透射率为 35%时,得到的最高平均输

收稿日期:2009-05-22; 收到修改稿日期:2009-06-30

作者简介: 闫 莹(1984—), 女, 博士研究生, 主要从事 LD 固体激光器件方面的研究。E-mail: yanying0709@gmail.com **导师简介**: 张恒利(1968—), 男, 研究员, 主要从事 LD 固体激光器件方面的研究。E-mail: zhl040325@bit.edu.cn

出功率为40 W,脉宽为42.2 ns,光-光转换效率为 38.4%。

2 实验装置

5 期

图 1 为实验装置示意图。激光器抽运源为激光 二极管阵列,由 4 个 bar 条组成,输出光中心波长为 808 nm,每个激光二极管都由一个微透镜对其输出 光进行准直。耦合系统与文献[5]中的相同,将激光 二极管发出的抽运光整形为一条水平方向光强近似 均匀分布的矩形抽运线(尺寸约为0.4 mm× 12 mm)入射到激光晶体端面,抽运光在晶体端面的 强度分布如图 2 所示。Nd:YVO4 晶体尺寸为 12 mm×10 mm×1 mm,Nd³⁺掺杂原子数分数为 0.3%。输入镜 M₁ 为凹面球面镜,曲率半径为 500 mm,镀有对808 nm高透和1064 nm高反的介质 膜;M₂ 为平面输出镜,对1064 nm激光具有一定的 透射率 T。激光器腔长为110 mm。声光Q开关重复 频率范围为 1~100 kHz。

- 图 1 实验装置示意图
- Fig. 1 Experimental setup

图 2 抽运光在晶体端面的强度分布 Fig. 2 Intensity distribution of pumping laser at the end of laser crystal

3 实验结果与讨论

输出透射率是影响激光输出功率的主要因素之一,在一定的抽运功率下存在一个最佳输出透射率 使得激光器的输出功率达到最高。M2 处的输出光 强可以表示^[10]为

$$I_{\rm out} = \frac{TI_{\rm s}}{(1+r_2/r_1)(1-r_1r_2)} \Big[\ln G_0 - \ln\Big(\frac{1}{r_1r_2}\Big) \Big],$$
(1)

式中 I_s 为饱和光强, T 为输出透射率, G_0 为腔内往 返两次的增益, $G_0 = \exp(2g_0 l) \cdot (1 - \delta)$, $r_1 = \sqrt{R_1}$, $r_2 = \sqrt{R_2}$, R_1 , R_2 分别为输入镜 M_1 和输出镜 M_2 的反射率, δ 为透射率以外的其他损耗, g_0 为小 信号增益系数。计算中所用到的参数分别为:输入镜 M₁ 反 射 率 R_1 为 0.99, YVO₄ 发 射 截 面 为 25×10⁻¹⁹ cm²,上能级寿命为100 μ s,增益介质长度 l 为 10 mm,抽运功率为100 W,谐振腔损耗 δ 为 0.01。计算结果如图 3 所示。由图 3 可知,此时的最 佳透射率在0.2~0.3之间。本文分别采用了 T=15%,25%,35%的输出镜进行了连续输出和调 Q 输出实验。

图 3 抽运功率 100 W 连续运转时,输出透射率与 输出功率的关系

Fig. 3 Relative output power as a function of transmission in CW operation at the pumping power of 100 W

图 4 为输出透射率 15%,25%,35%激光器连续运转情况下,输出功率随抽运功率的变化。实验 发现,输出透射率为 25%和 35%条件下,相同抽运

光

功率获得的激光输出功率相当,均高于 T=15%情况下的输出功率,因此 25%和 35% 更接近于激光器的最佳输出透射率,这与理论分析得到的结果相一致。

图 5 透射率 T=35%时,激光器输出平均功率随 抽运功率的变化

Fig. 5 Average output power as a function of pumping power with T=35%

从调 Q 脉冲产生的原理上分析,脉冲宽度与初 始反转粒子数密度(谐振腔 Q 值降低时的反转粒子 数)、阈值反转粒子数密度、腔内光子寿命等因素有 关,激光脉冲的前沿(上升时间)主要取决于初始反 转粒子数密度与阈值反转粒子数密度的比值,而脉 冲的后沿(下降时间)与腔内光子寿命成正比^[11]。 图 5~7分别为输出透射率 35%时声光调 Q 脉冲激 光器的输出平均功率、脉宽和单脉冲能量随抽运功 率的变化关系。在重复频率为40 kHz,抽运功率为 104 W时,得到的最高平均输出功率为40 W,脉宽 为42.2 ns,光-光转换效率为38.3%。在重复频率为 20 kHz,抽运功率为104 W时获得的最短脉宽为 21.1 ns,此时平均输出功率为33.3 W,单脉冲能量

图 7 透射率 T=35%时,激光器单脉冲能量随 抽运功率的变化

Fig. 7 Energy per pulse as a function of pumping power with $T{=}35\%$

为1.66 mJ。随着抽运功率的增加,激光器的输出功 率和单脉冲能量都在不断增加,而脉宽逐渐变窄。 这是由于增加抽运功率,即增大了初始反转粒子数 与阈值反转粒子数之比,腔内光子数的增加和反转 粒子数的下降速度都加快,因此脉宽变窄。同时,实 验结果表明,在相同的抽运功率下,高重复频率可以 获得更高的输出平均功率,但同时其脉宽相对低重 复频率较宽,单脉冲能量也更低。其原因在于,高重 复频率不利于增益介质储存大量的反转粒子数,使 反转粒子数初始值降低,因此脉宽较宽,单脉冲能量 也低于相同条件下低重复频率的调 Q 激光。图 8 为典型的脉冲波形,此时的脉冲宽度为28.6 ns。

图 9 为重复频率 30 kHz 时,输出透射率对脉冲 宽度的影响。在脉冲宽度较宽时,相同抽运功率下, 透射率越高输出脉宽越窄。在脉宽40 ns以下,这种 趋势并不明显,此时不同透射率的结果差距不大。 由于不同透射率所对应的谐振腔损耗不同,透射率

Fig. 9 Pulse width as a function of pumping power at 30 kHz with different transmissions

高时,腔内光子寿命较短,因此输出激光脉宽较窄。

由于板条增益介质本身宽度方向和厚度方向的 尺寸相差较大,并且实验中采用的为稳定腔结构,因 此激光器在两个方向上的光束质量差别也很大^[7]。 采用了刀口法测量了在抽运功率为100 W,激光连 续输出时的光束质量 M² 因子,竖直方向为1.3,水 平方向约为140。在竖直方向由于抽运光和基模振 荡光之间具有良好的模式匹配,因此光束质量很好; 在水平方向的菲涅耳数较大,在此方向的光强分布 是多个模式叠加形成的一维平顶分布。

4 结 论

采用激光二极管阵列端面抽运板条Nd:YVO4 激光晶体,结合不同透射率的平-凹稳定腔结构,获 得了高功率、高重复频率的声光调Q激光输出。在 重复频率为40 kHz,输出透射率为35%时,得到的 最高平均输出功率为40 W,脉宽为42.2 ns,光-光转 换效率为38.4%。在重复频率为20 kHz,抽运功率 104 W时获得的最短脉宽为21.1 ns。

参考文献

- K. Du, J. Biesendbach, D. Ehrlichmann *et al.*. Lasers for material processing: specification and trends [J]. *Opt. Quantum Electron.*, 1995, **27**(12):1089~1102
- 2 Takashige Omatsu, Tomohiro Isogami, Ara Minassian et al.. >100 kHz Q-switched operation in reansversely diode-pumped ceramic Nd³⁺ YAG laser in bounce geometry [J]. Opt. Commun., 2005, 249(4-6):531~537
- 3 Yan Xinpeng, Liu Qiang, Fu Xing et al., A 108 W, 500 kHz Q-switching Nd: YVO₄ laser with the MOPA configuration [J]. Opt. Express, 2008, 16(5):3356~3361
- Liu Qiang, Yan Xinpeng, Fu Xing et al.. 183 W TEM₀₀ mode acoustic-optic Q-switched MOPA laser at 850 kHz [J]. Opt. Express, 2009, 17(7):5636~5644
- 5 Shi Peng, Li Daijun, Zhang Hengli *et al.*. High power partially end-pumped slab laser with hybrid resonator [J]. Acta Optica Sinica, 2004, 24(4):491~494 石 鹏,李代军,张恒利 等. 大功率部分端面抽运混合腔板条

11 腑,子八半,ҡ叵利 守. 入功平部分增固加运化占 应 做 激光器[J]. 光学学报, 2004, **24**(4):491~494

6 Wang Ning, Lu Yutian. Partially end-pumped Nd: YVO₄ slab solid state laser [J]. Chinese J. Lasers, 2006, 33(10):1319~ 1323

王 宁,陆雨田. 部分端面抽运的 Nd:YVO4板条固体激光器 [J]. 中国激光, 2006, **33**(10):1319~1323

7 Shi Peng, Zhang Hengli, Wang Yongdong *et al.*. High repetition rate electro-optically *Q*-switched Nd: YVO₄ slab laser with high beam quality output [J]. Acta Optica Sinica, 2004, 24(5):641~644

石 鹏,张恒利,汪永东等.高重复频率电光调Q的高光束质量 Nd:YVO4板条激光器[J].光学学报,2004,**24**(5):641~644

- 8 Li Daijun, Ma Zhe, Rüdiger Haas et al.. Diode-pumped efficient slab laser with two Nd: YLF crystals and secondhamonic generation by slab LBO [J]. Opt. Lett., 2007, 32: 1272~1274
- 9 Li Xiaoli, Shao Jie, Zang Huaguo *et al.*. High repetition rate short pulse width Nd: YVO₄ slab laser [J]. *Chinese J. Lasers*, 2008, 35(2):206~210
 李小莉,邵 杰,臧华国等. 高重复频率窄脉宽 Nd: YVO₄板条 激光器[J]. 中国激光, 2008, 35(2):206~210
- 10 A. E. Siegman. Lasers [M]. University Science, 1986. 485
- 11 Zhou Bingkun, Gao Yizhi, Chen Tirong *et al.*. Principles of Laser [M]. Fifth edition. Beijing: National Defence Industry Press, 2004 周炳琨,高以智,陈倜嵘 等. 激光原理[M]. 第五版. 北京:国防 工业出版社, 2004